Astragaloside IV attenuates the H2O2-induced apoptosis of neuronal cells by inhibiting α-synuclein expression via the p38 MAPK pathway
نویسندگان
چکیده
An oxidative stress insult is one of the principal causes of Parkinson's disease. Astragaloside IV (AS-IV), a constituent extracted from Astragalus membranaceus, has been demonstrated to exert antioxidant effects. However, the mechanisms responsible for the antioxidant properties and neuroprotective effects of AS-IV remain unclear. In this study, we examined the protective effects of AS-IV against the apoptosis of human neuronal cells (SH-SY5Y cells) induced by hydrogen peroxide (H2O2). The results revealed that AS-IV pre-treatment attenuated the H2O2‑induced loss of SH-SY5Y cells in a dose-dependent manner; AS-IV exerted significant protecitve effects by decreasing the apoptotic ratio and attenuating reactive oxygen species overproduction in H2O2-exposed SH-SY5Y cells. By means of immunofluorescence staining, AS-IV was found to decrease the expression of α-synuclein and to increase the expression of tyrosine hydroxylase (TH) in the cells, which had been increased and decreased, respectively by H2O2. As shown by western blot analysis, the protective effects of AS-IV against SH-SY5Y cell injury induced by H2O2 were also mediated via the downregulation of the ratio of Bax/Bcl-2. We found that the neuroprotective effects of AS-IV were associated with the inhibition of the expression of the α-synuclein via the p38 mitogen-activated protein kinase (MAPK) signalling pathway. On the whole, our results suggest that AS-IV exerts protective effects against neurodegenerative diseases by targeting α-synuclein or TH.
منابع مشابه
Genistein Induces Apoptosis and Inhibits Proliferation of HT29 Colon Cancer Cells
Soybean isoflavone genistein has multiple anticancer properties and its pro-apoptotic and anti-proliferative effects have been studied in different cancer cells. However, the mechanisms of action of genistein and its molecular targets on human colon cells have not been fully elucidated. Therefore, caspase-3 and p38 mitogen-activated protein kinase (p38 MAPK) as the main therapeutic targets...
متن کاملChronic intermittent hypobaric hypoxia attenuates monocrotaline-induced pulmonary arterial hypertension via modulating inflammation and suppressing NF-κB /p38 pathway
Objective(s): Inflammation is involved in various forms of pulmonary arterial hypertension (PAH). Although the pathophysiology of PAH remains uncertain, NF-κB and p38 mitogen-activated protein kinase (p38 MAPK) has been reportedto be associated with many inflammatory mediators of PAH. This study aimed to evaluate the effect of chronic intermittent hypobaric hypoxia (CIHH) on pulmonary inflammat...
متن کاملFerulic acid protects PC12 neurons against hypoxia by inhibiting the p-MAPKs and COX-2 pathways
Objective(s):Hypoxia induces cellular oxidative stress that is associated with neurodegenerative diseases. Here, the protective effects of ferulic acid (FA) on hypoxia-induced neurotoxicity in PC12 cells were evaluated. Materials and Methods:We investigated the effect of FA on PC12 cells subjected to hypoxia stress, in vitro. Results:FA increased cell viability, prevented membrane damage (LDH r...
متن کاملModerate aerobic exercise training decreases middle-aged induced pathologic cardiac hypertrophy by improving Klotho expression, MAPK signaling pathway and oxidative stress status in Wistar rats
Objective(s): This study aimed to investigate the effect of aerobic training on serum levels of Klotho, cardiac tissue levels of H2O2 and phosphorylation of ERK1/2 and P38 as well as left ventricular internal diameter (LVID), the left ventricle wall thickness (LVWT) and fibrosis in middle-aged rats. Materials and Methods: Forty wistar rats, including young rats (n=10, 4 month-old) and middle-ag...
متن کاملReactive oxygen species mediate TNF-α-induced inflammatory response in bone marrow mesenchymal cells
Objective(s): It is generally believed that the inflammatory response in bone marrow mesenchymal stem cells (BMSCs) transplantation leads to poor survival and unsatisfactory effects, and is mainly mediated by cytokines, including interleukin-1β (IL-1β), tumor necrosis factor-α (TNF-α). In this study, we explored the mechanisms underlying the TNF-α-induced inflammatory ...
متن کامل